Nonparametric Bootstrapping for Multiple Logistic Regression Model Using R
نویسندگان
چکیده
The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap allows us to estimate the sampling distribution of a statistic empirically without making assumptions about the form of the population, and without deriving the sampling distribution explicitly. The main objective of this study to discuss the nonparametric bootstrapping procedure for multiple logistic regression model associated with Davidson and Hinkley's (1997) “boot” library in R.
منابع مشابه
A Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملAn Integrated DEA and Data Mining Approach for Performance Assessment
This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...
متن کاملMeasures for Binary Response Variable Model
Statistical inference is based generally on some estimates that are functions of the data. Bootstrapping procedure offers strategies to estimate or approximate the sampling distribution of a statistic. Logistics regression model with binary response is commonly used. This paper focuses on the behavior of bootstrapping pseudo R 2 measures in logistic regression model. Simulation and real data re...
متن کاملOn the Use of Nonparametric Regression in Assessing Parametric Regression Models
We develop a new method for assessing the adequacy of a smooth regression function based on nonparametric regression and the bootstrap. Our methodology allows users to detect systematic misfit and to test hypotheses of the form ‘‘the proposed smooth regression model is not significantly different from the smooth regression model that generated these data.’’ We also provide confidence bands on t...
متن کاملNonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints
Nonparametric smoothing under shape constraints has recently received much well-deserved attention. Powerful methods have been proposed for imposing a single shape constraint such as monotonicity and concavity on univariate functions. In this paper, we extend the monotone kernel regression method in Hall and Huang (2001) to the multivariate and multi-constraint setting. We impose equality and/o...
متن کامل